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ABSTRACT OF THESIS 
 
 
 
 

AGING AND SLEEP STAGE EFFECTS ON ENTROPY OF 
ELECTROENCEPHALOGRAM SIGNALS 

 
The aging brain is characterized by alteration in synaptic contacts, which leads to decline 
of motor and cognitive functions. These changes are reflected in the age related shifts in 
power spectrum of electroencephalogram (EEG) signals in both wakefulness and sleep. 
Various non-linear measures have been used to obtain more insights from EEG analysis 
compared to the conventional spectral analysis. In our study we used Sample Entropy to 
quantify regularity of the EEG signal. Because elderly subjects arouse from sleep more 
often than younger subjects, we hypothesized that Entropy of EEG signals from elderly 
subjects would be higher than that from middle aged subjects, within a sleep stage. We 
also hypothesized that the entropy increases during and following an arousal and does not 
return to background levels immediately after an arousal. Our results show that Sample 
Entropy varies systematically with sleep state in healthy middle-aged and elderly female 
subjects, reflecting the changing regularity in the EEG. Sample Entropy is significantly 
higher in elderly in sleep Stage 2 and REM, suggesting that in these two sleep stages the 
cortical state is closer to wake than in middle-aged women. Sample Entropy is higher in 
post-arousal compared to the pre-arousal and stays high for a 30 sec period.  
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CHAPTER 1: INTRODUCTION 

  

The Electroencephalogram (EEG), which is a recording of the patterns of 

electrical activity of the cerebral cortex, allows us to understand better the function of the 

brain in both the awake and sleep states. It is the only non-invasive and inexpensive 

imaging technology that can be used to evaluate sleep quality [1]. When a person is 

awake, brain patterns are highly desynchronous. The awake brain produces alpha and 

beta rhythms, which are high frequency waves with low amplitude. Alpha waves range 

between 8.0 and 12.0 Hz and beta waves have a frequency of ≥ 14.0 Hz. EEG in sleep 

Stage 1 is dominated by theta activity, which is slower in frequency and greater in 

amplitude compared to Wake Stage. Theta waves have a frequency range between 4.0 to 

8.0 Hz. Stage 2 has theta waves interspersed by sleep spindles, which are characterized 

by a transient increase in frequency, and K complexes, which are characterized by a 

transient decrease in frequency and an increase in amplitude. Stages 3 and 4 are 

dominated by delta activity, which falls in the range of 4.0 Hz and below. Delta rhythm is 

the highest in amplitude and comprises the slowest waves. The EEG in rapid eye 

movement (REM) stage looks very similar to that in the Wake Stage, containing mostly a 

combination of alpha and beta waves. The EEG recordings in different sleep stages from 

one of the subjects are shown in Figure (1.1). 

With aging, the beta power was shown to increase, along with decreases in sigma, 

delta and theta band powers in almost all sleep stages [2]. In contrast, younger subjects 

were shown to have higher power at low frequencies. Carrier et al. also suggested that 

there may be an association between increase in age and attenuation of homeostatic sleep 

pressure, which in turn could lead to an increase in cortical activation state during sleep 

[2].  

The EEG signal is highly irregular and its regularity varies not only among 

different sleep stages, but also within a sleep stage. We define the varying degree of EEG 

regularity as the complexity of the EEG signal. This signal is extremely complex, since 

the EEG is generated as a superposition of weakly correlated dynamical systems. These 

temporal variations can provide insights into differences between diseased and normal 

states and hence may be used as biomarkers that are predictive of a trend towards an 
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abnormal state. The temporal variations, which include frequency of arousals, have been 

employed by other researchers as biomarkers for underlying disease process [3]. 

 An EEG arousal as defined by the American Sleep Disorders Association 

(ASDA) is “an abrupt shift in EEG frequency, which may include theta, alpha and/or 

frequencies greater than 16Hz, but not spindles.” and is subjected to certain rules and 

conditions which are given in reference 4 [4]. Though arousals are intrinsic components 

of physiological sleep [5], an increase in the frequency of arousals is associated with 

sleep disorders and with aging [2, 6, 7]. Frequent arousals also tend to occur in patients 

with upper airway disease [8].  Also of concern, the increase in nocturnal blood pressure 

in sleep apnea/hypopnea syndrome and in periodic limb movement disorder is related to 

arousals [5]. The arousal index, i.e., the number of arousals per hour, is widely used in 

the literature as an indicator of severity of a sleep disorder and is sometimes used to make 

decisions on treatments. However, there is considerable variability in scoring arousals, 

even by experienced observers [9]. The Sleep Heart Health Study (SHHS) [33] scorers 

achieved poor-to-moderate agreement in identifying arousals for inter-scorer reliability 

and inter-scorer agreement was greater for sleep stage scoring than for arousal 

identifications, as it is sometimes difficult to discern the occurrence of an abrupt increase 

in EEG frequency from the background EEG activity [10].  

 

1.1 EEG analysis techniques 

 

 Power spectral analysis is the traditional linear measure of the EEG signal. 

Various linear and non-linear measures have been studied for sleep staging. It was 

observed that non-linear measures were better at discriminating sleep stages I and II and 

that spectral measures were better at discriminating sleep stages I, III and IV [11]. The 

EEG analysis done on all night recording focused on individual frequency bands and the 

patterns they followed in normal and patient populations [1, 12, 13, 14].  These analyses 

show the distribution of high frequency and low frequency components in the REM and 

non-REM sleep stages. However, these power distributions could not differentiate all 

non-REM and REM sleep stages. As Sample Entropy is calculated on the entire signal 

and not on any specific frequency band of the signal, the analysis we propose gives a 
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consolidated picture without losing information from any frequency band. It strikes a 

balance between the sleep promoting mechanism (the delta region) and the arousal 

promoting mechanism (alpha and beta regions). Hence, our first goal was to assess sleep 

staging and determine whether the results of our analysis are consistent with the 

Rechtschaffen and Kales sleep staging [15]. 

 

1.2 Entropy 

 

 Entropy is a measure of randomness or unpredictability in a system containing 

information. In our analysis, we use Entropy to quantify “regularity” or “complexity” of 

the EEG signal. Entropy is the negative logarithmic probability of occurrence of an event. 

A high Entropy value commonly corresponds to randomness, while a low value 

corresponds to predictability. Predictability corresponds to regularity. In our study, we 

use Sample Entropy to quantify this regularity. 

 Approximate Entropy (ApEn) is a measure of the logarithmic likelihood that a set 

of data points close for m observations remain close when m+1 data point is added. The 

calculation of ApEn is briefly described by S.M. Pincus et al [16]. ApEn of the EEG 

signals has been shown to change with aging and neurodegenerative diseases like 

Alzheimer’s disease [16, 17]. ApEn calculation is associated with a bias as it includes self 

matches. This bias made ApEn dependent on record length and it also lacks relative 

consistency [18]. These limitations led to the development of Sample Entropy (SaEn) 

which does not take into account the self matches, thereby eliminating the bias involved 

in ApEn calculation.  

  

1.3 Hypotheses:  

 

(i) The regularity of the EEG signal varies throughout the night. As entropy is a 

measure of randomness of the signal, we use a particular measure of entropy 

called Sample Entropy to quantify the regularity of the EEG signal. We 

hypothesize that the Sample Entropy values of EEG signals in healthy middle 

aged and elderly female subjects are highly correlated with sleep stages.  
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(ii) The regularity of the EEG signal varies with sleep stage, as there are large shifts 

in the power spectrum from one sleep stage to another. The regularity of the EEG 

signal increases visually as we move from Wake (highly irregular) to sleep Stage 

1 to sleep Stage 2 until Stage 4 (highly regular). Another way of looking at it 

would be that the regularity of the EEG signal increases with the shifts in power 

spectrum towards a lower frequency range. With aging, it has been shown that 

there are shifts in the power spectrum towards the higher frequency range [2] i.e., 

with aging, the regularity of the EEG signal decreases. The entropy value of a 

highly regular signal is very low and similarly, entropy of a highly irregular signal 

is very high. Hence, we hypothesize that the Sample Entropy values of the elderly 

are higher than those of the middle aged female subjects within a sleep stage.   

(iii) An arousal is marked by an abrupt increase in theta, alpha and/or beta 

frequencies. Arousals are almost always preceded by delta bursts, which cause a 

decrease in the Sample Entropy. Hence, we hypothesize that Sample Entropy in 

the middle aged and elderly subjects is lower before than that after an arousal and 

that this difference increases with age. 

 

In order to test these hypotheses, two studies of EEG signals were conducted. In 

the first, we analyzed SaEn and power spectral density of the first sleep epoch in 20 

middle aged and 20 elderly subjects. In the second, arousals occurring during Stage 3 

were analyzed in 20 middle aged and 20 elderly subjects. SaEn and power before and 

after the arousal were compared.   
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FIGURE 1.1: Electroencephalogram signal in different sleep stages. From this figure, 
it is evident that the regularity of the EEG signal varies with sleep stage. 
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CHAPTER 2: BACKGROUND 

 

2.1 Physiology of Sleep 

 

The most common notion people usually have about sleep is that we sleep only to 

rest our tired bodies. Some neuroscientists argue that at least one vital function of sleep is 

bound with learning and memory. Sleep loss makes you more reckless, more emotionally 

fragile, less able to concentrate and almost certainly more vulnerable to infection [50]. 

“Sleep is an actively induced, highly organized brain state” marked by these four 

qualities:   

1. Reduced motor activity  

2. Lowered response to sensory stimulation  

3. Adoption of stereotypic postures such as lying down with the eyes closed, and  

4. Easy reversibility (compared to coma, stupor, hibernation, etc.) [19] 

Sleepers are not in a single stage through out the night, but they pass through five 

sleep stages: Stage 1, Stage 2, Stage 3, Stage 4 and rapid eye movement (REM) stage. 

The sleep Stage 1, Stage 2, Stage 3 and Stage 4 are the non-REM (NREM) sleep stages 

and sleep consists of alternating cycles of REM and NREM stages. A normal subject’s 

sleep cycle would look similar to the diagram shown in Figure (1.1). 

Stage 1 is the lightest sleep stage, during which the eyes move slowly and muscle 

activity slows and the person can be easily awakened. The EEG is dominated by the 

alpha and beta rhythms. As a person enters Stage 2, the brain’s EEG activity becomes 

slower and is dominated by theta waves and there are no more eye movements. In Stage 

3, slow delta waves with the occasional bursts of smaller, faster waves are common. 

Stage 4 is primarily characterized by delta waves.  Stages 3 and 4 are the deep sleep 

stages. It is very difficult to wake a person from deep sleep. REM is marked by jerky eye 

movements, irregular and shallow breathing and temporarily paralyzed limb muscles. It is 

in this sleep stage that most of the dreams occur [25].  
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2.2 Sleep Deficiency 

 

Sleep deficiency implies a decrease in either quality or quantity of sleep. Though 

the amount of sleep required varies from person to person, adequate sleep is essential for 

good mental and physical health. In a “Sleep in America” poll conducted by the National 

Sleep Foundation in 2002, approximately 32 million people have fallen asleep while 

driving. Sleep deficit leads to micro-sleep periods, which are brief moments of sleep, and 

it takes only a couple of seconds of micro-sleep while driving a car at 60 miles an hour to 

drift completely out of a lane. These brief lapses in attention could result in very serious 

accidents [20]. 

 Sleep deprivation or sleep debt has been shown to impair the immune function in 

humans [21]. Sleep disordered breathing reduces the oxygen saturation, which could lead 

to an arousal, causing sleep fragmentation. Sleep fragmentation is characterized by 

repeated interruptions in sleep and is one of the determinants of daytime sleepiness [22]. 

Sleep deficit could alter the levels of hormones leptin and ghrelin which could increase 

hunger and appetite, leading to overeating and weight gain. It was also observed that 

when healthy young adults were subjected to recurrent partial sleep restriction, they 

showed marked alterations in glucose metabolism including decreased glucose tolerance 

and insulin sensitivity, resulting in type 2 diabetes [23]. It has been indicated that sleep 

loss could put the body in a high state of alert and as the body produces inflammatory 

markers, there are risks of adverse cardiovascular events [24].  

 

2.3 Sleep Studies 

 

Sleep studies involve recording various biophysiological signals of the subject 

during sleep and is known as polysomnography. It is a multi-parametric test that monitors 

function of the brain, heart, and lungs, as well as muscle activity. Some of the common 

signals measured are the Electroencephalogram (EEG), Electrocardiogram (EKG), 

Electrooculogram (EOG), Electromyogram (EMG), oxygen saturation, respiratory effort, 

and heart rate. The polysomnography helps in diagnosing sleep disorders like sleep 
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apnea, narcolepsy, restless leg syndrome, etc. Figure (2.2) shows the polysomnogram of a 

middle aged subject from the Sleep Heart Health Studies (SHHS) database.   

 

2.4 Basics of the Electroencephalogram  

 

 An Electroencephalogram (EEG) is a recording of the electrical activity of the 

brain from electrodes placed on the scalp. It basically measures the summated activity of 

the postsynaptic potentials of thousands of neurons that have similar spatial orientation. 

These postsynaptic potentials are classified as excitatory or inhibitory and originate from 

the impulses arriving at the cortical neurons from other nearby neurons. The scalp EEG 

has a very wide frequency range and wide spatial distributions which are highly 

dependent on the state of brain function. Hence, the regularity of the EEG varies during 

different sleep stages. The EEG activity during sleep is mainly regulated by the thalamus, 

cortex and Pons. The thalamus consists of a pair of large oval masses of gray matter 

deeply situated in the forebrain and located on either side of the midline. It relays 

information to the cerebral cortex that is received from diverse brain regions and 

contributes to the regulation of autonomic activities and maintenance of consciousness. 

The thalamus blocks sensory information going to the cortex when the person is asleep 

[25]. The cerebral cortex is the outer rim of gray matter of the cerebrum. It plays a key 

role in memory, attention, perceptual awareness, thought, language and consciousness 

[26]. The Pons is a structure located on the brain stem. It relays sensory information 

between cerebellum and cerebrum and helps in relaying other messages in the brain, 

controls arousals and regulates respiration [27].      

 

2.5 EEG Analysis 

 

 The conventional analysis of human sleep follows a set of pre-defined rules for 

sleep staging by visual inspection of the polysomnograms [15]. However, visual scoring 

by the R & K method is subject to both inter- and intra-scorer variability [28] and the 

arbitrarily defined thresholds to separate the sleep stages make it even more difficult to 

achieve accuracy [29]. Numerous attempts have been made to identify better methods to 
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analyze sleep. Power spectral analysis has been used for studying all-night EEG 

oscillations [12], effects of sleep deprivation on sleep stages [30], and EEG changes in 

patients with sleep apnea syndrome [31]. The period amplitude analysis [51] was used for 

sleep staging and studying gender differences, but it failed to show significant gender 

differences [14, 32]. Delta power and spectral edge have been used to monitor sleep 

cycles and the depth of anesthesia [48]. Fell et al. compared the performance of eight 

EEG measures for sleep stage discrimination. They included both linear and non-linear 

measures: relative delta power, spectral edge, spectral entropy, first spectral moment, 

stochastic time domain based measure entropy measure of amplitudes, correlation 

dimension, largest Lyapunov exponent and approximated Kolmogorof entropy. They 

concluded that the correlation dimension and Lyapunov exponent were better at 

discriminating stages 1 and 2, while the spectral measures were better at discriminating 

Stage 2 and slow wave sleep (stages 3 and 4 combined). Hence, no single measure could 

discriminate the sleep stages accurately [11]. 
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FIGURE 2.1: All night Sleep Cycle of a normal, healthy subject 
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FIGURE 2.2: A 20 sec polysomnogram recording of a middle aged subject 
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CHAPTER 3: METHODS 

 

In this chapter, the data and the analysis used for the study on sleep stage and the 

arousal study are discussed. The EOG removal was first performed on the data before 

calculating the Sample Entropy. A detailed description of the EOG removal filter is given 

in this chapter. Power spectral analysis was also carried out on the data. Because of the 

difficulty in identification of arousals, a novel method was proposed for the same. To 

verify the statistical significance of the results, a test of analysis of variance was 

performed.   

  

3.1 Subjects 

 

The overnight polysomnographs of subjects used in this study were obtained from 

the NIH sponsored Sleep Heart Health Study (SHHS). The SHHS study includes 

approximately 6,400 subjects and the polysomnograms were obtained at participants’ 

home [33]. The montage includes two electroencephalograms (EEG), two 

electrooculograms (EOG), electrocardiogram (EKG), heart rate, chin electromyogram 

(EMG), oximetry, chest wall and abdominal movement, nasal/oral airflow, and body 

position. Sleep staging was done on 30 sec records based on Rechtschaffen and Kales 

guidelines [15], by the SSHS technicians. The data set we chose consists of Caucasian 

women from two age groups, middle aged (42 – 50 years) and elderly (71 – 86 years). 

Twenty subjects were chosen from each age group, with the mean age of middle aged 

women being 47.2 ± 2 years and the mean age of elderly women being 78.4 ± 3.8 years. 

These subjects were selected after a careful study of their medical history to make certain 

that they were not suffering from sleep disordered breathing and were not on any 

medication that would interfere with sleep. They were not current smokers and their BMI 

were ≤ 30.  
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3.2 Data 

 

The polysomnogram channels used for the analysis are the C3A2 EEG cerebral 

montage and the left EOG signal. The EEG records that are free from EMG or EKG 

artifacts were chosen by visual inspection. Also, the segments with breathing 

abnormalities or with low oxygen saturation values (lower than 90%) were avoided.  

 

3.2.1 Sleep Stage Study 

 

 Simultaneous 30 sec EEG and EOG records were selected from the 20 middle 

aged and 20 elderly subjects, avoiding segments where an arousal occurred for ≤ 15 sec 

before or after the selected segment. The EEG signal was sampled at 125Hz and the EOG 

at 50 Hz. The original EEG and EOG signals were aligned in time and the alignment was 

maintained after sub-sampling. For each subject, we aimed to extract six 30 sec records 

from each of the stages: Wake, Stage 2, Stage 3 and REM. The data were extracted only 

from the first sleep cycle, i.e., until the end of first REM stage. The number of 30 sec 

segments analyzed for Sample Entropy calculation is 925. The mean numbers of 30 sec 

segments analyzed per subject in middle age are: Wake = 5.8, Stage 2 = 6.0, Stage 3 = 

5.7, and REM = 5.6, and those in elderly subjects are: Wake = 5.9, Stage 2 = 6.0, Stage 3 

= 6.0 and REM = 5.4. Apart from Sample Entropy, spectral power was estimated for 

randomly chosen subjects (8 in the middle aged and 8 in the elderly group).  

 

3.2.2 Arousal Study  

 

 For this study, data segments of 1 min were taken both before and after the 

arousal, leaving a window of 1 sec between the arousal and the segments chosen for 

analysis. The protocol for selection of an arousal segment is shown in Figure (3.1). When 

1 min data was inextricable, a 30 sec segment was extracted. Sample Entropy was 

calculated on these segments for all 30 sec, 15 sec and 10 sec periods, while spectral 

power was estimated for all 30 sec, 15sec and 9 sec periods. The segments chosen for 
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analysis are only from stage 3 and are not restricted to the first sleep cycle, but taken 

from all sleep cycles. Stage 3 was chosen because of high inter- and intra-scorer 

reliability for scoring arousals in this stage [28]. The number of segments chosen for 

Sample Entropy calculation and spectral power estimation for elderly and middle aged 

subjects are summarized in tables 3.1 and 3.2.  

 

3.3 Signal Analysis 

 

The EEG and EOG signals were extracted into MATLAB from the overnight 

polysomnogram records. As the two signals were sampled at different frequencies, the 

EEG signal was first up-sampled to 250Hz by repeating every sample and then sub-

sampled to 50 Hz by selecting every fifth sample, to bring both the EEG and EOG to 

same sampling frequency. Both EEG and EOG signals were then low-pass filtered using 

a Hamming window based finite impulse response filter with 24.25 Hz as cutoff 

frequency to remove unwanted/noise components. 

 

3.3.1 Sleep Stage Study  

 

 The analysis was first done on the 20 middle aged subjects and then on the 

elderly.  The segments with movement artifacts, EMG and EKG contamination were not 

selected for the analysis. The EOG signal is the major contaminant of the EEG signal. 

 

3.3.1.1 EOG contamination 

 

 The EEG signal was sometimes highly contaminated by the EOG signal, the EOG 

signal having power concentrated below 3Hz. The eye forms an electric dipole, where 

cornea is positive and retina is negative. EOG is an electric signal that is produced when 

the electric field around the eye changes because of eye movement.  This signal 

propagates across the scalp and hence is picked up by the EEG leads as contamination. 

Though various methods have been developed to remove the EOG contamination [34, 

35], it has not previously been done prior to entropy calculation [36, 17]. The signal 
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components of EEG and EOG below 3.125 Hz were obtained by wavelet decomposition 

using Daubechies (order 4) filter and from now on are referred to as EEGF and EOGF. 

The wavelet decomposition was done primarily to reduce the amount of EEG signal 

being removed, which has relevant information, outside the EOG dominant range. Also, 

the EEG components below 3.125Hz can be added back to the components above 

3.125Hz after the EOG removal. Using EOGF as input an optimal noise removal filter 

was designed, whose output is the correlated EEOF signal. Figure (3.2) shows the 

Minimum Mean Squared Error (MMSE) filter design [49]. 

The filter is designed using the following relation: 

  F=R-1g 

where, F is a column matrix consisting of filter coefficients of length, say, p 

 R is the autocorrelation matrix of EEGF calculated for p+1 lags 

 g is the cross correlation vector between EEGF and EOGF calculated for p+1 lags 

The elements in R and g are computed by generating convolution matrix and are 

normalized by dividing by the total number of elements in the input signal. Proper filter 

design depends on the filter length chosen. It is based on the following factors: 

1. Coherence between EOGF and filtered EEG 

2. Filter impulse response 

3. Magnitude and Phase in the 0-3 Hz range 

 

The example of a coherence plot is shown in Figure (3.3). The blue line in this 

plot represents the coherence between EOGF and EEGF, the green line represents the 

coherence between EEGF and the correlated EOGF, and the red line represents the 

coherence between EOGF and the optimally filtered EEGF. The correlated EOGF is the 

EOG contamination signal that is removed from the EEGF, and filtered EEGF is the 

optimally filtered output obtained by subtracting the correlated EOGF. Coherence 

between two signals tells us how well the signals correspond to one another at each 

frequency. Its value ranges between 0 and 1. A value of 0 implies there is no temporal 

correlation between the two signals and a value of 1 implies maximum correlation 

between the two signals. For every segment, the filtering process was repeated until we 

achieved a low coherence value at all frequencies below 3 Hz.  
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The desired length of the impulse response of the filter is achieved when the filter 

coefficient values decrease and come close to zero, with an increase in the number of 

coefficients. The filter lengths usually varied between 10 and 48. Figure (3.4) shows the 

example of an impulse response plot for which the number of coefficients is 30. 

The focus of the frequency response of the filter, again, is in the 0-3 Hz range. 

One expects a decrease in gain of the signal with increase in frequency along with 

increasing phase shift. 

 Once the EOG contamination was removed, the optimally filtered EEGF signal 

was added back to the EEG signal components above 3.125 Hz to obtain an EEG signal 

free from EOG artifacts for further analysis. 

 

3.3.1.2 Sample Entropy Calculation 

  

 Sample Entropy, SampEn(m, r, N), as defined by Richman et al. is the negative 

natural logarithm of the conditional probability that two sequences similar for m points 

remain similar at the next point, where self matches are not included in the probability 

calculations. Its calculation is as follows [18]:   

For a time series of N points,  

{u (j): 1≤ j ≤ N} form N-m-1 vectors, xm(i) for {i: 1 ≤ i ≤ N-m+1}  

where xm(i) = {u(i+k):0 ≤ k ≤ m-1} is the vector of m data points u(i) to u(i+m-1) 

           m is the length of the sequences to be compared. 

    The distance between two such vectors is the maximum difference between 

corresponding elements of the two vectors and is defined as: 

 d[x(i), x(j)] = max{| u(i+k) – u(j+k) | : 0 ≤ k≤ m-1} 

x(i) is the template vector and x(j) is the conditional vector, as we calculate the 

conditional probability of d[xm(i),xm(j)] being less than a tolerance width, r.  

Now,  Bi
m(r) = [number of times xm(i) within r of xm(j)] * (N-m+1)-1  

           Ai
m(r) = [number of times xm+1(i) within xm+1(j)] * (N-m)-1 

Sample Entropy is computed as follows: 
N-

 SampEn (m, r, N) = - (N-m)-1 ln [∑   Ai
m(r) / Bi

m(r)] 
m 

i 
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Figure (3.5) illustrates the calculation of the conditional probability of the 

conditional vector, falling within a tolerance width of the template vector. Here, m=1 is 

used for the illustration. The blue dots represent a part of the EEG signal sampled at 50 

Hz. The sample highlighted by the red circle represents the template vector, x(16) and the 

samples highlighted by black circles represent the conditional vectors, x(20) and x(44). 

The magenta lines represent the tolerance width of the template vector, which is x(16) ± 

20 % of the standard deviation of x. Now we calculate the number of conditional vectors 

that fall within these limits for the template vector x(16), from which we calculate the 

probability of one point matches. By taking m=2 and m=3, we calculate the probabilities 

of two point matches and three point matches. Sample Entropy is the negative natural 

logarithm of the ratio of the probability of three point matches to the probability of two 

point matches. 

The parameters chosen for the Sample Entropy calculation, SpEn (m,r,N) are the 

length of the vector for Sample Entropy calculation, m and the tolerance width, r. N is the 

number of data points, which is 1500 for a 30 sec record. Increasing the value of r or 

decreasing the value of m increase the number of matches. Values of 1 or 2 for m and 0.1 

– 0.25 times the standard deviation for r have been used in previous physiological studies 

[17, 36, 37]. We chose r to be 0.2 times the standard deviation of the EOG-free EEG 

signal and m to be 2 for calculating the Sample Entropy. By choosing the r value as a 

percentage of the standard deviation of the signal, data with different amplitude ranges 

can be compared.  

 

3.3.1.3 Power Spectral Analysis 

 

Power of the EEG signal was calculated for 16 subjects (8 from each age group) 

in different frequency bands, defined as very low frequency region (0-0.5 Hz), delta 

region (0.667 – 3.833 Hz), theta region (4 – 7.833 Hz), alpha region (8 – 11.833 Hz) and 

beta region (12 – 20 Hz) . The spectral power was estimated for the 30 sec records using 

Welch’s periodogram method by taking 6 sec sub-segments with half overlap. Relative 
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power in each region is given by the ratio of absolute power in the respective region to 

the total power.   

3.3.1.4 Statistical Analysis 

 

The mean (± standard deviation) Sample Entropy values were computed in each 

of the Wake, Stage 2, Stage 3 and REM sleep stages within each age group. A two-factor 

analysis of variance (ANOVA) was used to test the differences (p<0.05) between these 

mean Sample Entropy values with sleep stages and age. The differences between the 

mean Sample Entropy values with age were also assessed for all the four sleep stages. 

This was followed by a Tukey post-hoc test, which includes a correction for multiple 

comparisons.  

 The two factor ANOVA was used again to assess the changes in power values in 

each of the alpha, beta, theta, and delta bands with age and sleep stage. This analysis 

again was followed by the Tukey post-hoc test. 

 

3.3.2 Arousal Study 

 

The Sample Entropy was calculated for 22 arousals in middle aged and the power 

analysis was done for 32 arousals in the same subjects. In the elderly subjects, Sample 

Entropy was calculated for 29 arousals and the power analysis was done for 37 arousals. 

Initially when we calculated Sample Entropy for more than 20 arousals, we did not find 

any pattern in those values. When we did the spectral analysis of these segments, we 

realized that some of the arousals marked by the SHHS scorers do not meet the ASDA 

criteria of arousals. Figure (3.6) shows an example of spectral analysis of a segment and 

the black lines mark the arousal indicated by the SHHS scorers. It is apparent from the 

figure that there is no increase in any of the alpha, beta or theta powers which should 

identify the arousal [4]. For some arousals, the start and stop time were not marked 

accurately. 

We devised a method to choose arousals that met our criteria from the SHHS 

marked arousals. Because an arousal is defined as an abrupt increase in alpha (8-12 Hz), 

beta (16-24Hz) or theta (4-8 Hz) bands, the logarithmic power in these three bands was 
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added in the segment to be analyzed. We redefined the beta band, as the sleep spindles 

occur in 12- 16 Hz range and they do not mark arousals. The power signal that we used to 

identify an arousal is as follows:  

Power signal =10*(log (alpha power) + log (beta power) + log (theta power)) 

We identified the start and stop times of arousal when the power signal crosses a 

baseline which marks power doubling. The baseline was marked by first calculating the 

mean of the power signal for the minute preceding the arousal marked by SHHS and then 

adding 6 dB to it. When the power signal exceeded the threshold for 3 or more sec and 

less than 15 sec, the peak was identified as an arousal. The irregular black dashed line in 

Figure (3.7) is the power signal and the solid red line indicates the power signal passed 

through a median filter. The magenta line is the baseline for power signal. The green 

arrow shows the arousal identified by this method. Though there are other peaks that 

cross the baseline, they are not marked as arousals as they do not last for 3 sec. Figure 

(3.8) shows the spectral analysis of the arousal shown in Figure (3.7), where the increase 

in alpha and beta powers are apparent. Hence, SHHS arousal for which the power signal 

crossed 6 dB threshold was chosen for our analysis. 

 

3.3.2.1 Sample Entropy Calculation 

 

The Sample Entropy was calculated as described in section 3.3.12 for the pre- and 

post-arousal segments (of lengths 10, 15, or 30 sec) identified by our method and after 

the EOG removal was done as described in section 3.3.1.1.    

 

3.3.2.2 Power Spectral Analysis 

  

Power was calculated in different frequency bands, defined as delta region (0.5–

4.0 Hz), theta region (4.0 – 8.0 Hz), alpha region (8.0 – 12.0 Hz), sigma region (12.0 – 

16.0 Hz) and beta region (16 – 24 Hz) by taking the square of the moving averager of the 

EEG signal. A 3 sec window was used for the moving averager. The power was 

estimated during the 9 sec, 15 sec and 30 sec intervals for the same records on which 

Sample Entropy was previously calculated. 
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3.3.2.3 Statistical Analysis 

 

A one-factor (age) analysis of variance (ANOVA) with repeated measures 

followed by a post-hoc test was used to test the differences (p<0.05) between the Sample 

Entropy values in consecutive 10 sec records. The differences between the Sample 

Entropy values with age were also assessed. The one factor ANOVA with repeated 

measures followed by post-hoc test was used again to assess the changes in power values 

in each of the alpha, sigma, beta, theta, and delta bands with age. 
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TABLE 3.2: Number of arousals chosen for sample entropy calculation 

 

AGE Group Number of 

subjects 

30 sec 15 sec 10 sec 

 

Middle Aged 

 

14 19 21 22 

 

Elderly 

 

16 28 29 29 

 

 

 

 

TABLE 3.3: Number of arousals chosen for power calculation 

 

AGE Group Number of 

subjects 

30 sec 15 sec 10 sec 

 

Middle Aged 

 

14 30 31 32 

 

Elderly 

 

16 35 35 35 
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 FIGURE 3.1: Protocol for selection of an arousal segment for Sample Entropy 

calculation 
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FIGURE 3.2: Scheme for removing EOG contamination from EEG signal. 
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FIGURE 3.3 Plot of Coherence vs. Frequency. The blue line is the coherence between the 

EEG and EOG signals below 3 Hz. The red line in the figure is the coherence between 

the EEG and EOG signals below 3 Hz after the EEG signal is free from the EOG 

contamination.  
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FIGURE 3.4 Example of an impulse response of an MMSE filter. The desired length of 

the impulse response of the filter is achieved when the filter coefficient values decrease 

and come close to zero, with increase of number of coefficients. 
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FIGURE 3.5: Figure illustrating the calculation of conditional probability 
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FIGURE 3.6: EEG spectral power for an SHHS-marked arousal in different frequency 

bands.  This “arousal” does not meet the ASDA criteria. 
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FIGURE 3.7: Identification of an arousal; the green arrow indicates an arousal  

identified by our method.  
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FIGURE 3.8: EEG spectral power for an arousal in different frequency bands. This 

“arousal” is the same arousal shown in Figure 3.7.  
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CHAPTER 4: RESULTS 

 

4.1 Sample Entropy and Sleep Stages 

 Figure 4.1 shows examples (from one subject) of the varying regularity of the 

EEG signal during sleep stages Wake, Stage 2, Stage 3, Stage 4 and REM and the 

corresponding Sample Entropy values indicated by SaEn for a 30 sec EEG record. This 

figure shows that EEG is highly irregular in Wake Stage and hence its Sample Entropy 

value is higher. In Stage 2, EEG regularity increases and the SaEn value decreases. As 

the regularity of signal increases from Stage 2 to Stage 3 and from Stage 3 to Stage 4, the 

entropy value decreases further. In REM, the EEG becomes irregular and hence its 

entropy again increases, but is still less than the entropy of Wake Stage. Figure 4.2 

illustrates examples from another subject that this trend is consistent during Wake, Stage 

1, Stage 2, Stage 3 and REM in a middle aged subject. Each vertical bar in this figure 

represents a Sample Entropy value calculated for a 30 sec period. The sleep stages, 

during which these SaEn values are calculated, are shown on x-axis. 

The mean Sample Entropy values are calculated for six 30 sec periods in each of 

the four sleep stages (Wake, Stage 2, Stage 3 and REM) in every subject. These values 

are presented for the 20 middle aged subjects in Figure 4.3 and for 20 elderly subjects in 

Figure 4.5. Table 1 and table 2 present the mean Sample Entropy values of the 20 middle 

aged and 20 elderly subjects, respectively, in all four sleep stages. 

ANOVA of SaEn values was conducted for Wake, Stage 2, Stage 3 and REM in 

both middle aged and elderly subjects. The Wake mean SaEn values are significantly 

higher than the Stage 2 and Stage 3 mean SaEn values (p<0.0001), Stage 2 mean SaEn 

values are significantly higher than mean Stage 3 SaEn values (p<0.0001) and the REM 

mean SaEn values are significantly higher than those of Stage 2 (p<0.0001) and Stage 3 

(p<0.0001) and significantly lower than those of Wake (p<0.0001) in middle aged and 

elderly subjects.  

The difference in mean Sample Entropy values among the four sleep stages: 

Wake, Stage 2, Stage 3 and REM in middle aged and elderly subjects are presented in 

Figure 4.4 and Figure 4.6, respectively. The W-S2 category on x-axis indicates the Stage 

2 Sample Entropy values subtracted from the Wake stage Sample Entropy values. 
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Similarly, the other categories show the differences between subsequent sleep stages as 

indicated. Each figure shows that Wake SaEn values are higher than those of Stage 2 in 

each of the 20 middle aged subjects as well as in each of the 20 elderly subjects. 

Similarly, Stage 2 SaEn values are higher than Stage 3 SaEn, and REM SaEn values are 

higher than Stage 3 SaEn values. The Wake SaEn values are higher than the REM SaEn 

values in middle aged subjects, however this difference is not as consistent in the elderly. 

In 18 out of 20 elderly, the Wake SaEn values are higher than the REM SaEn values. As 

six 30 sec EEG segments in Stage 1 and Stage 4 could not be found in all the subjects, 

these stages are excluded.    

The mean SaEn values in middle aged and elderly subjects were compared during 

Wake, Stage 2, Stage 3 and REM. The comparison between the two age groups during 

the four sleep stages is presented in Figure 4.7. The mean SaEn values in both age groups 

are found to be significantly different between the age groups only in Stage 2 (p<0.029) 

and REM (p=0.001).  

 The mean relative delta, theta, alpha and beta power values were compared 

between middle aged and elderly in Wake, Stage 2, Stage 3 and REM. The relative mean 

power values in four bands were compared in Wake Stage (Figure 4.8), in Stage 2 

(Figure 4.9), in Stage 3 (Figure 4.10) and in REM (Figure 4.11). The relative mean delta 

power values are significantly higher in middle aged compared to the elderly subjects in 

Wake (p=0.001), Stage 2 (p<0.0001), Stage 3 (p=0.026) and REM (p<0.0001). Relative 

mean beta power values are significantly lower in middle aged than in elderly subjects in 

Stage 2 (p=0.045) and REM (p=0.006) and relative mean alpha power is also lower in 

middle aged than in elderly subjects in Stage 2 (p=0.045) and REM (0.006). 

 

4.2 Arousal Study 

 

The absolute power values in each of the delta, theta, alpha, sigma and beta bands 

were calculated for six 9 sec intervals during pre-arousal and post-arousal. The mean 

power values for 32 arousals in 14 middle aged and 37 arousals in 16 elderly subjects in 

each frequency band are presented in table 3 and table 4 respectively. The percent 

difference from overall mean power (average of all 12 pre- and post-arousal segments) 

 30



was calculated for each of the 9 sec segments and these values are shown in Figures 4.12-

4.16 for middle aged and elderly subjects. In both age groups there is a small increase in 

delta activity from the mean value (Figure 4.12) in pre-arousal segments and there is a 

large increase in delta activity (delta bursts) right before the arousal. In the first four post-

arousal segments, the delta power is lower than the overall mean in middle aged and in 

elderly. The theta activity (Figure 4.13) also increases above its overall mean before the 

arousal. The post-arousal theta activity decreases below mean in most of the segments in 

both age groups. Though there is small increase above the overall mean initially in 

middle aged subjects, the theta power values are much lower than the mean later on. In 

elderly, the theta power is below the mean in first three post-arousal segments to the same 

extent. The alpha activity (Figure 4.14) in pre-arousal segments is slightly above the 

mean and it is below the mean for the first three post-arousal records in both age groups. 

The pattern of sigma activity (Figure 4.15) is similar to that of alpha activity, i.e., it is 

slightly above the mean before arousal and then it is much below the mean after the 

arousal. The beta power (Figure 4.16) is lower than its overall mean during pre-arousal 

periods and increased during the post-arousal records. There is large increase from the 

record right before the arousal to the record right after the arousal in both age groups. 

The mean Sample Entropy values were calculated for six 10 sec pre-arousal and 

six 10 sec post-arousal periods in each age group during Stage 3. These arousals are the 

ones for which power was calculated and included all arousals for which the SaEn 

calculations were possible. The mean Sample Entropy values for 22 arousals in 14 middle 

aged and 29 arousals in 13 elderly subjects are presented in table 5. A percent difference 

of mean Sample Entropy values from the average of all 12 pre- and post-arousal 

segments (overall mean) were calculated for each of the 10 sec segments and are shown 

in Figure 4.17 for middle aged and elderly subjects. The Sample Entropy increases above 

the mean during the post-arousal segments and the percent difference from mean is 

almost the same for the first three post-arousal segments in both age groups.  

One factor ANOVA was performed on each of SaEn, delta power, theta power, 

alpha power, sigma power, and beta power in both middle aged and elderly subjects using 

repeated measures analysis. The post-hoc test showed a significant difference between 

the delta power values of sixth pre-arousal segment and first post-arousal segment 
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(p<0.01), and between the fifth and sixth pre-arousal segments (p<0.01). Significant 

difference was found between the theta power values of first and second post-arousal 

segments (p=0.007), and between third and fourth post-arousal segments (p=0.021). 

Significant difference was also found between the sigma power values of fourth and fifth 

pre-arousal segments (p=0.045), and between sixth pre-arousal and first post-arousal 

segment (p<0.001), and between third and fourth post-arousal segments (p=0.015). Also, 

beta power values are significantly different between first and second pre-arousal 

segments (p=0.037), and between sixth pre-arousal and first post-arousal segments (p= 

0.002). The SaEn values are significantly different between sixth pre-arousal segment 

and first post-segment (p=0.018). Though delta, sigma and beta powers showed 

significant differences between sixth pre-arousal (segment right before the arousal) and 

the first post-arousal (segment right after the arousal) segments, they showed significant 

differences between a few other consecutive 9 sec segments too. Sample Entropy takes 

into account the variations in all frequency bands and gives a unified measure. During 

pre-arousal segments, the power in delta and theta bands is higher than their group’s 

overall mean value and the power in beta is lower than their overall mean. Because the 

low frequency activity is greater than the mean and high frequency activity is below the 

mean (though there is small increase in alpha and sigma activity at times), the Sample 

Entropy values are lower before the arousal. Similarly, the SaEn values increase above 

their group’s overall mean in the post-arousal segments because the low frequency 

activity is below the mean and the high frequency activity is above the mean. The 

ANOVA did not result in significant differences of SaEn between the two age groups. 

 

 

 

 

 

 

 

 

 

 32



 

TABLE 4.1: Mean (+/- S.D.) Sample Entropy values in 20 middle aged subjects 

 

 

 

SLEEP 

STAGE 

 

WAKE 

 

STAGE 2 

 

STAGE 3 

 

REM 

 

SAMPLE 

ENTROPY 

 

1.985±0.125 

 

1.601±0.120 

 

1.388±0.139 

 

1.772±0.103 

 

 

 

 

 

 

TABLE 4.2: Mean (+/- S.D.) Sample Entropy values in 20 elderly subjects 

 

 

 

SLEEP 

STAGE 

 

WAKE 

 

STAGE 2 

 

STAGE 3 

 

REM 

 

SAMPLE 

ENTROPY 

 

1.977±0.130 

 

1.652±0.108 

 

1.357±0.148 

 

1.842±0.094 

 

 

 

 

 33



 

TABLE 4.3: Mean (+/- S.D.) power values of 9 sec segments for middle aged subjects  

 

   
Mean  Power 

   
Arousal   
Segment   Delta  

(*10^3) 
 Theta  
(*10^2) 

Alpha  
(*10^1) 

  Sigma 
(*10^1) 

   Beta   
 

 
Pre 
Arousal-1 

 
133.6 ±93.2 

 
111.9 ±49.57 

 
610.3 ±433.1 
 

 
161.8 ±99.97 
 

 
373.3 ±190.2 
 

 
Pre 
Arousal-2 

 
142.6 ±122 

 
116.3 ±51.87 
 

 
563.5 ±290.1 
 

 
166.9 ±112.9 

 
375.6 ±148.4 
 

 
Pre 
Arousal-3 

 
114.4 ±68.5 
 

 
117.6 ±79.39 
 

 
570.9 ±443.3 

 
141.9 ±75.54 
 

 
393.8 ±201.3 
 

 
Pre 
Arousal-4 

 
132.4 ±94.1 

 
113.3 ±49.44 

 
522.7 ±291.3 
 

 
156.7 ±73.89 

 
374.9 ±194.5 
 

 
Pre 
Arousal-5 

 
101.2 ±50.1 

 
109.3 ±55.6 
 

 
598.5 ±403.4 
 

 
167.4 ±90.16 

 
354.0 ±136.5 

 
Pre 
Arousal-6 

 
181.9 ±103 

 
118.5 ±40.04 
 

 
587.7 ±439.5 
 

 
173.1 ±84.99 
 

 
409.7 ±199.4 
 

  
 

 
AROUSAL 
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TABLE 4.3 (continued) 

 

   
Mean  Power 

   
Arousal   
Segment   Delta  

(*10^2) 
 Theta  
(*10^2) 

Alpha  
(*10^1) 

  Sigma 
(*10^1) 

   Beta   

 
Post 
Arousal-1 

 
951.5 ±822 
 

 
111.8 ±58.99 
 

 
480.3 ±307.9 
 

 
113.8 ±60.54 

 
465.4 ± 
260.2 
 

 
Post 
Arousal-2 

 
737.5 ±881 

 
823.2 ±34.86 

 
410.7 ±249.3 
 

 
107.8 ±47.54 

 
420.5 ± 
266.2 
 

 
Post 
Arousal-3 

 
720.7 ±563 

 
935.6 ±38.52 
 

 
495.5 ±33.66 
 

 
132.0 ±60.26 
 

 
401.2 ± 
196.8 
 

 
Post 
Arousal-4 

 
860.4 ±669 

 
1105 ±54.42 

 
590.9 ±375.2 
 

 
188.5 ±97.81 

 
416.6 ± 
248.6 
 

 
Post 
Arousal-5 

 
1233 ±1086 

 
1148 ±63.63 

 
660.2 ±396.4 
 

 
208.5 ±120.7 
 

 
567.6 ± 
615.9 
 

 
Post 
Arousal-6 

 
913.2 ± 
635.9 

 
1176 ±57.09 

 
638.3 ±573.6 
 

 
187.5 ±141.9 
 

 
438.0 ± 
227.5 
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TABLE 4.4: Mean (+/- S.D.) power values of 9 sec segments for elderly subjects 

 

   
Mean  Power 

   
Arousal   
Segment   Delta  

(*10^3) 
 Theta  
(*10^2) 

Alpha 
(*10^1)  

  Sigma 
(*10^1) 

   Beta   

 
Pre 
Arousal-1 

 
119.9 ± 92 
 

 
138.3 ± 61.73 
 

 
509.7 ± 259.4 
 

 
161.4 ± 
92.47 
 

 
537.1 ± 
323.9 
 

 
Pre 
Arousal-2 

 
111.9 ± 
71.53 
 

 
142.9 ± 55.17 
 

 
515.0 ± 291.3 

 
159.5 ± 
85.68 
 

 
477.2 ± 
216.4 
 

 
Pre 
Arousal-3 

 
113.3 ± 
69.84 
 

 
148.4 ± 70.02 

 
496.9 ± 300.1 

 
171.4 ± 
97.07 
 

 
483.7 ± 
233.5 

 
Pre 
Arousal-4 

 
120.4 ± 
61.63 
 

 
140.6 ± 58.23 
 

 
520.7 ± 267.3 
 

 
176.4 ± 
135.2 

 
545.7 ± 
526.3 
 

 
Pre 
Arousal-5 

 
103.6 ± 
43.06 
 

 
136.7 ± 71.52 
 

 
482.7 ± 228.3 
 

 
143.3 ± 
67.12 
 

 
478.2 ± 
271.3 
 

 
Pre 
Arousal-6 

 
153.7 ± 
70.34 
 

 
142.1 ± 61.02 

 
487.7 ± 240.8 
 

 
147.4 ± 
64.44 
 

 
480.1 ± 
174.5 
 

  
 

 
AROUSAL 
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TABLE 4.4 (continued) 

 

   
Mean  
Power 

   
Arousal   
Segment 

  Delta  
(*10^2) 

 Theta  
(*10^2) 

Alpha  
(*10^1) 

  Sigma 
(*10^1) 

   Beta   

 
Post 
Arousal-1 

 
883.7 ±624.4 
 

 
137.3±57.98 
 

 
488.2 ± 288.5 
 

 
143.3 ± 70.34 
 

 
629.5 ± 
313.15 
 

 
Post 
Arousal-2 

 
812.1 ±653.7 
 

 
134.2±51.86 
 

 
436.2 ± 186.9 
 

 
141.5 ± 69.86 

 
547.1 ± 
242.66 
 

 
Post 
Arousal-3 

 
959.4 ±653.6 
 

 
134.5±46.19 
 

 
468.6 ± 255.9 
 

 
158.8 ± 130.9 
 

 
600.3 ± 
505.8 

 
Post 
Arousal-4 

 
942.3 ±968.5 
 

 
128.0±56.05 
 

 
467.2 ± 222.2 
 

 
166.9 ± 91.75 
 

 
508.8 ± 
225 

 
Post 
Arousal-5 

 
103.3 ±666.3 
 

 
156.0±62.78 

 
881.8 ± 256.9 

 
120.9 ± 102.8 
 

 
544.1 ± 
263.6 
 

 
Post 
Arousal-6 

 
123.3 ±837.7 
 

 
152.2±68.79 
 

 
591.2 ± 387.9 
 

 
199.6 ± 164.9 

 
544.4 ± 
238.7 
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TABLE 4.5: Mean (+/- S.D.) Sample Entropy values of 10 sec segments for middle aged 

and elderly subjects 

 

Arousal 
Segment 

Middle Aged 
 Subjects 

Elderly 
Subjects 

Pre Arousal-1 1.342 ± 0.1759 1.421 ± 0.2282   

Pre Arousal-2 1.295 ± 0.2301 1.375 ± 0.1667 

Pre Arousal-3 1.318 ± 0.1524 1.426 ± 0.1859 

Pre Arousal-4 1.429 ± 0.2408 1.341 ± 0.1836 

Pre Arousal-5 1.385 ± 0.2695 1.362 ± 0.1597  

Pre Arousal-6 1.359 ± 0.2247 1.332 ± 0.1669 

 AROUSAL  

Post Arousal-1 1.444 ± 0.2178 1.456 ± 0.2085 

Post Arousal-2 1.436 ± 0.2974 1.448 ± 0.1592 

Post Arousal-3 1.457 ± 0.1968 1.454 ± 0.1986 

Post Arousal-4 1.411 ± 0.2214 1.449 ± 0.1793 

Post Arousal-5 1.489 ± 0.2068 1.390 ± 0.1761 

Post Arousal-6 1.521 ± 0.1547 1.366 ± 0.2002 
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SaEn = 2.1081

SaEn = 1.6348

SaEn = 1.3529

SaEn = 1.0352

SaEn = 1.7725

Wake 

REM 

Stage4 

Stage2 

Stage3 

   

FIGURE 4.1: 30-second records of EEG signals in different sleep stages after 
removal of EOG contamination. The corresponding sample entropy values are 
indicated in red as SaEn, calculated over a 30 sec period from an overnight 
polysomnogram of one middle aged subject 
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FIGURE 4.2: Sample Entropy values in sleep stages: Wake, Stage 1, Stage 2, Stage 3 and 

REM from an overnight polysomnogram of one middle aged subject. Each vertical line 

corresponds to Sample Entropy calculated during a 30-sec period in the indicated sleep 

stages as shown on x-axis.    
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FIGURE 4.3:  Mean Sample Entropy values in various sleep stages for all 20 middle aged 

subjects. * = significantly different from other sleep stages (p< 0.0001). 
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FIGURE 4.4: Difference in Sample Entropy values between subsequent sleep stages for 

all 20 middle aged subjects. W-S2 stands for Stage 2 Sample Entropy values (SaEn) 

subtracted from Wake SaEn, S2 – S3 stands for Stage 2 SaEn minus the Stage 3 SaEn, 

S3-REM implies Stage 3 SaEn minus REM SaEn and W-REM indicates Wake SaEn 

minus the REM SaEn. Each symbol stands for the difference in SaEn for one subject.   
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FIGURE 4.5: Mean Sample Entropy values in various sleep stages for all 20 elderly 

subjects. * = significantly different from other sleep stages (p< 0.0001). 
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FIGURE 4.6: Differences in Sample Entropy values between subsequent sleep stages for 

all 20 elderly subjects. W-S2 stands for Stage 2 Sample Entropy values (SaEn) subtracted 

from Wake SaEn, S2 – S3 stands for Stage 2 SaEn minus the Stage 3 SaEn, S3-REM 

implies Stage 3 SaEn minus REM SaEn and W-REM indicates Wake SaEn minus the 

REM SaEn. Each symbol stands for the difference in SaEn for one subject.   
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FIGURE 4.7: Mean Sample Entropy values in various sleep stages for all 20 middle aged 

and 20 elderly subjects. Middle aged Sample Entropy values are significantly different 

from elderly Sample Entropy values in Stage 2 and REM. * = significant difference 

between age groups (p<0.029), ** = significant difference between age groups (p=0.001)  
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FIGURE 4.8: Relative power values in different frequency bands in Wake Stage. The 

middle aged relative power in delta and beta bands is significantly different from that of 

the elderly subjects in eight subjects. ** = significant difference between age groups 

(p=0.006), **** = significant difference between age groups (p<0.0001) 
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FIGURE 4.9: Relative power values in different frequency bands in Stage 2. The middle 

aged relative power in delta and beta bands is significantly different from that of the 

elderly subjects in eight subjects. * = significant difference between age groups 

(p=0.045), **** = significant difference between age groups (p<0.0001) 
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FIGURE 4.10: Relative power values in different frequency bands in Stage 3. The middle 

aged relative power in delta and beta bands is significantly different from that of the 

elderly subjects in eight subjects. * = significant difference between age groups 

(p=0.045) 
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FIGURE 4.11: Relative power values in different frequency bands in stage. The middle 

aged relative power in delta and beta bands is significantly different from that of the 

elderly subjects in eight subjects.  *** = significant difference between age groups 

(p<0.001), **** = significant difference between age groups (p<0.0001) 
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FIGURE 4.12: Percent difference from overall mean in Delta power during pre- and post-

arousal.  
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FIGURE 4.13: Percent difference from overall mean in Theta power  
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Percentage difference in Alpha power 
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FIGURE 4.14: Percent difference from overall mean in Alpha power  
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FIGURE 4.15: Percent difference from overall mean in Sigma power  
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Percentage difference in Beta power 
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FIGURE 4.16: Percent difference from overall mean in Beta power  
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FIGURE 4.17: Percent difference from overall mean in Sample Entropy  
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CHAPTER 5: DISCUSSION 

 

This chapter includes the methodological issues of our study and the 

interpretation of the results. It mainly deals with how and why Sample Entropy changes 

during different sleep stages in general and in two different age groups and during 

arousals. We try to address the critical issue of whether Sample Entropy conveys 

information not available from spectral analysis.  

   

5.1 Methodological Issues 

 

Sleep is a continuous process, with the sleepers passing from Wake to Stage 1 and 

then to Stage 2, Stage 3, Stage 4 and REM. This pattern of sleep stages is repeated 

throughout the night, although not every person goes through all the sleep stages. Stage 1 

and Stage 4 were not included in the study because of the lack of a sufficient amount of 

these stages in some of the 40 subjects, although some data were discarded because of 

complications in EOG removal. In the elderly, it was observed that only a few subjects go 

into the deepest sleep stage, Stage 4. Though the values are not shown, the Stage 1 SaEn 

values calculated for a few subjects are closest to those of REM and fall between those of 

Wake and Stage 2. Also, the Stage 4 values are smaller than the Stage 3 SaEn values, 

following the consistent pattern of an initial high SaEn value for Wake and then a 

continuous decrease from Wake to Stage 1, Stage 1 to Stage 2 to Stage 3 to Stage 4 and 

finally an increase in SaEn in REM.  

Topographical differences have been shown in different EEG bands during the 

first 30 min of sleep with the EEG power exhibiting an antero-posterior gradient in 

different bands [38]. However, our study includes the EEG signal from only a central 

derivation, as central leads are the only available leads in SHHS studies. With change in 

frequency distribution of EEG power, the Sample Entropy would also change. Though 

the entropy variations in other leads were not explored, the results from a single lead are 

likely to be representative. Blessy Mathew has shown that the Sample Entropy values 

calculated from the O1A2 lead followed the systematic patterns similar to the Sample 
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Entropy values calculated from the C3A2 lead [39]. Also, it has been recommended that 

only central or occipital EEG derivations should be used for scoring arousals [4]. 

Sleep staging is usually done in 30 sec or 20 sec intervals [15]. Though the values 

are not shown, entropy has been calculated in our study for segments as short as 6 sec. 

Because the variability of SaEn for these segments was too high, it was difficult to draw 

meaningful conclusions from their analysis. On the other hand, a long record could be 

insensitive to subtle changes in the EEG regularity. Since the sleep staging done by 

SHHS scorers was in 30 sec intervals, we chose 30 sec records for our analysis.  

 In contrast to our study, the EEG signal above 25Hz has been included in the beta 

region in some studies [40, 41]. The cut off frequency of the low pass filter is 24.25Hz, 

thereby attenuating any signal beyond this frequency. Since the EOG sampling frequency 

is 50Hz, the EEG signal had to be sub-sampled to 50 Hz, forcing the cut off frequency to 

be ~25Hz. However, the power was concentrated below 20 Hz in most of the cases 

(Figure 5.1).  

During the EOG removal process, both EOG and EEG signals were decomposed 

to obtain the signal components below 3.125Hz. These components were used to remove 

the EOG contamination as its power is concentrated below 3Hz (Figure 5.2). The EOG 

contamination above 3Hz, however small it may be, was still present in the EEG signal. 

While there was EOG contamination in the EEG signal, there could be EEG 

contamination in the EOG signal. In such case, it is difficult achieve optimum filtering 

because of the bidirectional contamination.  This situation usually led to very large filter 

lengths and such data were discarded. The optimal filter had to be designed for each data 

record because of two reasons: firstly, the filter properties may change because of the 

physiological conditions. Secondly, the input to the filter contains noise, which varies for 

every segment because the cross-contamination between the EOG and EEG recordings 

depends on the sleep stage. Hence, a constant number of filter coefficients could not be 

used for all data segments and they varied from 10 to 48.      

 The identification of arousals has low inter-scorer reliability and a new method 

was developed to overcome this limitation. Arousals are defined as an abrupt shift in 

EEG frequency, which may include theta, alpha and/or frequencies greater than 16Hz but 

not spindles [4]. It is not uncommon that scorers cannot achieve high reliability on 
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arousal scoring, let alone the start and stop timing of an arousal [10]. Some of the 

arousals scored by the SHHS scorers did not have any increase in their alpha, beta or 

theta power when a power spectral analysis was done (Figure 3.6). Only those SHHS 

scored arousals that showed power doubling were selected for our analysis.  

 

5.2 Interpretation of Results 

  

The long-term goal of our study is to develop an EEG measure that can 

discriminate abnormalities between the normal and aged brain. Studies indicated that 

there is considerable change in the EEG power spectrum of the abnormal brain [42]. 

Early stages of dementia are associated with an increase in theta activity, while later 

stages are associated with an increase in delta activity, often accompanied by decreases in 

alpha and beta frequencies [43]. The slower frequencies were reported to decline across 

REM periods in subjects with clinical depression [13]. We developed a method that can 

track changes in the varying frequencies of an EEG signal, based on the regularity of the 

signal. Sleep stage discrimination is the basic test for any EEG measure’s capability of 

discriminating the EEG regularity. The application of non-linear methods was believed to 

be more useful for understanding the EEG complexities [36]. Non-linear parameters like 

correlation dimension, fractal dimension, largest Lyapunov exponent, approximate 

entropy, Hurst exponent, phase space plots and recurrence plots were used to analyze 

sleep data [36]. The variation in approximate entropy is very similar to our results, except 

that the approximate entropy was reported to be higher in Stage 2 compared to Stage 1. 

Also, the consistency of entropy values within the subjects was not addressed. Because of 

the bias in this measure [18], Sample Entropy was developed. However, EOG removal 

was not done prior to the calculation of any of these measures. Another entropy measure 

called Tsallis entropy, which is a measure of the probability distribution of the amplitude 

of a time series, was also used to study the sleep stage changes [39]. It was reported that 

the changes in Tsallis entropy values were not as consistent as the Sample Entropy 

values.  
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Though various measures (spectral edge, spectral entropy, correlation dimension, 

largest Lyapunov exponent, first spectral moment) for EEG signal analysis were applied 

previously, a significant level in discrimination of the four sleep stages was not achieved 

by any single linear or non-linear measure [11]. In contrast, the Sample Entropy of the 

EEG signal is shown in our study to correlate strongly with the sleep stages (Wake, Stage 

2, Stage 3 and REM) in both elderly (Figure 4.6) and middle aged (Figure 4.4) groups. 

The qualitative difference in the Sample Entropy values between different sleep stages 

was evident even in individual subjects (Figures 4.3 and 4.5).  We feel that the greater 

sensitivity of our method is due to the removal of EOG contamination prior to the 

calculation of the Sample Entropy of the signal [39].   

 The Sample Entropy tracks changes in the regularity of the EEG signal from one 

sleep state to another. As the EEG in Wake is highly irregular, the Sample Entropy 

assumes a high value and as we go through stages 2, 3 and 4, the Sample Entropy value 

decreases with the increasing regularity of the signal. The EEG signal in REM is again 

desynchronous, very similar to that during Wake, and hence the entropy again increases. 

Though the Sample Entropy values are significantly different between the sleep stages, 

there are slight variations within a sleep stage for individual subjects (Figure 4.2). This 

finding may suggest a possibility of much finer sub-sleep stages than the conventional R 

& K sleep stages.   

As a person moves from Wake to Stage 1, Stage 1 to Stage 2 and then to slow 

wave sleep, there is a decrease in the high frequency components of the EEG, along with 

an increase in the low frequency components. The Sample Entropy reflects these changes 

in the power spectrum as a unified measure. Multiple linear regression analysis of SaEn 

on relative beta, theta and delta bands across both age groups and all four sleep stages 

showed a significant positive correlation between SaEn and relative beta power 

(p<0.0001), and between SaEn and relative theta power (p<0.006). Significant negative 

correlation was found between SaEn and relative delta power (p<0.0001). The beta band 

is thought of as an indicator of a higher arousal level in sleep while delta is an indicator 

of a sleep-promoting factor [40, 41]. In the presence of beta frequency components, the 

Sample Entropy goes up and it comes down with an increase in delta frequency 

components. Hence, Sample Entropy can be thought of as a balance between sleep-
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promoting and arousal-promoting mechanisms as it is negatively correlated with relative 

delta power and positively correlated with relative beta power.  

Decreased low frequency activity and increased involuntary arousals are the 

hallmarks of aging [44]. The spectral power is higher at low frequencies and the power is 

lower at high frequencies for younger subjects. With increase in age, there is a gradual 

decrease in the delta, theta and sigma bands along with an increase in beta power [2]. 

This may reflect a shift of the sleep state in elderly towards a more awake cortical state. 

Sample Entropy showed significant differences between the middle aged and elderly 

groups in Stage 2 and REM (Figure 4.7). The entropy values are higher in elderly 

compared to middle aged subjects in these two sleep stages. Power spectral analysis on 

the segments that were used for entropy calculations revealed that the relative delta 

power is higher in middle aged subjects compared to the elderly and relative beta and/or 

relative alpha power is higher in elderly compared to middle aged subjects (Figures 4.8 – 

4.11).  

This part of the discussion is about why we need a new measure for arousal 

scoring and how Sample Entropy is used to study the arousals. The associations between 

sleep disorder, sleep fragmentation and other physiological process have been studied for 

many years [3]. Arousals have been associated with a significant increase in mean arterial 

blood pressure in studies conducted to study the cardiovascular response to arousal from 

sleep under controlled conditions [45]. In hemodialysis patients, a higher frequency of 

arousals was reported [46]. In our study, we put an additional power doubling criterion on 

the arousals marked by SHHS scorers so that there are no false arousals. Figure 3.6 

shows an example of an arousal which has increases in alpha, beta and/or theta band 

power values. The ASDA rules define an arousal as an abrupt increase in frequency, but 

provide no quantitative measure. Hence, there is high inter-scorer variability and reduced 

accuracy in arousal scoring. In our method, log power was taken to compensate for the 

varying ranges of power for varying sleep stages. As an arousal is defined as an increase 

in alpha, beta, and/or theta powers, the log of these power values are added. A 6 dB 

increase of log-power value from the baseline marks an arousal (Figure 3.7). 
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The Sample Entropy was calculated for 30 sec, 15 sec and 10 sec segments. The 

30 sec segments are too large to track the subtle changes that could occur near the 

arousal. Though the comparisons are not shown, the 10 sec SaEn values are better at 

tracking the EEG regularity before and after the arousal than the 15 or 30 sec SaEn 

values. Results from the statistical analysis showed that there is a significant difference 

between the segments that are immediately before and after the arousal for Sample 

Entropy values, in addition to delta, theta, and beta power values. This shows that the 

brain is still in a higher cortical arousal state (higher SaEn values, table 4) in the post-

arousal period. The power values also showed significant differences between other 

segments (ANOVA results from section 4.2).  The mean beta and delta power values 

were significantly different between the segments right before and right after the arousal. 

When compared to the pre-arousal levels, mean beta power is higher after the arousal and 

mean delta power is lower, which could mean that the arousal-promoting factor is high 

and sleep-promoting factor is lower even after the arousal. The beta and delta mean 

power values do not change much for at least 30 sec after the arousal. This may make it 

easy for the next arousal to occur, increasing the arousal frequency. This could also mean 

that the quality of sleep is reduced because the subject does not go back to a deeper sleep 

stage (which has lower Sample Entropy value) immediately.  

The percent increase of mean SaEn values from the overall mean (Figures 4.17, 

4.23) show that there is not much change in the entropy values for 30 sec in the post-

arousal region. This implies that the brain is still in a higher cortical state for 30 sec after 

the arousal, without going back to the background level. Though this may seem like a 

small time duration, the chances for another arousal in succession are high because the 

EEG is already in a higher cortical state. Multiple arousals further worsen the sleep 

fragmentation, leading to daytime sleepiness [47]. It is, however, surprising to find no 

significant differences between the age groups. This could be because of the fact that 

many entries were deleted by SYSTAT as there were some missing cases during the pre-

arousal segments and/or post-arousal segments. Hence, many arousals could not be 

analyzed. These results, however, are preliminary results and more arousals have to be 

analyzed for the future studies. 
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In conclusion, the Sample Entropy tracks the changes in power spectrum in 

different sleep stages and provides a unified measure for sleep staging. Sample Entropy 

might be an indicator of the finer sub-sleep stages than the conventional R&K sleep 

stages. Also, Sample Entropy can be thought of as a balance between sleep-promoting 

and arousal-promoting mechanisms. Hence, we can speculate that the Sample Entropy 

consolidates the changes from different frequency bands and serves as a single measure 

that can provide valuable information that is not evident from the spectral analysis alone.  
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FIGURE 5.1: Power Spectrum of a raw EEG signal showing most of the power is 

concentrated below 25Hz. Note: This case (i.e., Wake EEG) represents the sleep 

state with greatest power at frequencies >20Hz.  
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FIGURE 5.2: Power Spectrum of a raw EOG signal showing most of the power is 

concentrated below 3Hz. 
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CHAPTER 6: CONCLUSIONS, IMPLICATIONS, AND FUTURE DIRECTIONS 

 

1. Sample Entropy tracks changes in the EEG regularity and it highly correlates with 

R & K sleep staging.  

2. Sample Entropy differs between sleep stages in healthy middle aged and elderly 

women. 

3. The differences between Sample Entropy values for successive sleep stages are 

highly consistent for each of 20 middle-aged and 20 elderly subjects. 

4. Sample Entropy is significantly higher in elderly in Stage 2 and REM, suggesting 

that in these two sleep stages the elderly are closer to Wake state than middle 

aged women.  

5. Sample Entropy in the post-arousal 9 sec record immediately after the arousal is 

significantly different from the Sample Entropy value in the pre-arousal 9 sec 

record right before the arousal. 

6. Sample Entropy value is higher in the post-arousal period and does not change 

much for a 30 sec period.  

 

Sample Entropy tracks changes in the regularity of the EEG signal during Wake 

and different sleep stages. We think that it highly correlates with sleep stages, in part, 

because of the EOG removal process. Sample Entropy can be thought of as an integrative 

measure of the various changes in power spectrum of the EEG signal in different sleep 

stages. Significant differences are found between Sample Entropy values of Wake, Stage 

2, Stage 3 and REM. We speculate that the Sample Entropy measure, along with a 

measure of the EMG activity could be used in an algorithm for automated sleep staging, 

with appropriate training of the algorithm. Though Sample Entropy values are highly 

consistent within a sleep stage, there are slight variations in the entropy values. This 

might be indicative of sleep sub-stages apart from the R&K defined sleep stages. In 

addition to the variations in EEG during different sleep stages, Sample Entropy showed 

significant differences between the middle aged and elderly age groups. It signifies the 

fact that Sample Entropy could track the changes in the regularity in the EEG signal that 

are caused due to aging. Sample Entropy showed significant differences between the 

 62



post-arousal and pre-arousal 9 sec interval Sample Entropy values. The Sample Entropy 

values suggest that the EEG is in a higher cortical arousal state even after the end of an 

arousal and remains in a higher cortical state for at least 30 sec after an arousal. As the 

EEG does not go back from the higher cortical state immediately after an arousal, it 

increases the possibility for another arousal occurring in succession. Successive arousals 

lead to sleep fragmentation, thereby leading to daytime sleepiness and in addition 

decreasing the sleep quality.   

 

FUTURE DIRECTIONS: 

 

Having seen the pattern of EEG in middle aged (40-50 yrs) and elderly (70-80 

yrs) subjects, studying Sample Entropy variation in young adults (20-30 yrs) would be a 

valuable addition. The Sample Entropy in the younger subjects could be lower than those 

of the middle aged subjects with much larger differences between young adults and 

middle aged subjects than the differences between middle aged and elderly.  

The Sample Entropy calculations were done only during the first sleep cycle. 

Studies have shown that the spectral variations are different for sleep cycles in the later 

half of the sleep. Sample Entropy can be used to study variations in sleep quality during 

different sleep cycles. If the deterioration of sleep quality in the elderly is more 

pronounced in later sleep cycles, studying the first sleep cycle would not be sufficient. 

For the arousal study, only sleep Stage 3 was considered because of the higher 

inter-scorer reliability. Now that we have devised a method to identify the arousals, the 

arousal study in other sleep stages should be further explored. It would be interesting to 

know if the patterns followed by arousal-promoting and sleep-promoting factors are 

similar for arousals in other sleep stages. If there are significant differences, the arousals 

should be grouped separately to mark the severity of sleep deterioration. This might 

provide more accurate associations between arousals and apneas, neurodegenerative 

disorders, etc. Another important factor associated with severity of sleep deterioration is 

the occurrence of multiple arousals. In our study, we included only isolated arousals. 

Studying multiple arousals (arousals in quick succession) provides more information on 
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sleep fragmentation and, in general, about poor sleep quality in people with a high 

arousal index.  

Sample Entropy is shown to track the regularity of the EEG. Hence, it is a 

powerful measure that can be used to study changes in the temporal variations of EEGs 

of subjects with neurodegenerative diseases (e.g., in Alzheimer’s patients). 

Neurodegeneration sets in long before the symptoms could be diagnosed. As 

neurodegenerative diseases are also associated with memory and dementia, studying the 

EEG regularity using Sample Entropy during different mental tasks might be helpful in 

early diagnosis of the disease.  
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